If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+2b-30=0
a = 1; b = 2; c = -30;
Δ = b2-4ac
Δ = 22-4·1·(-30)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{31}}{2*1}=\frac{-2-2\sqrt{31}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{31}}{2*1}=\frac{-2+2\sqrt{31}}{2} $
| -78=6(1+2p) | | 7=(6n+8) | | 4x+17=x-1/2 | | -6v+3(v-2)=-15 | | 8m=226 | | 8(4-x)+9(x+4)=10 | | 5x+7x+x=180 | | 3(x–2)–(2–5x)=4–6(2–3x)–7x | | 8x=4x+34 | | (X+2)+x+(x-5)=48 | | 3x-12+x=24= | | 5r+13=4r+6 | | 5(u-1)-5=-4(-5u+3)-3u | | -4x=-5(x+7)-10 | | 2x+150=x-195 | | 54x=0.60 | | 3/2(2p-5)+4=10 | | -8(u+2)=-5u+2 | | 2x+14=-12x | | 3x-5(2x-3)-3=26 | | x=-3=-4 | | 7^x-9=16^-3 | | 0.4(y+10)+0.6=2 | | 0.60x=54 | | 2/3×n=4/1 | | 2x=2x3 | | (a2=4 | | 11x^2-8x-4=0 | | 3(t+1)=8 | | 7+z/3=5 | | 2/3u-7/3=-7u-7/4 | | 5n-121⁄2=121⁄2n= |